SECURITY

IN MANETS USING CRYPTOGRAPHY ALGORITHMS

Abstract – Mobile Ad-hoc Network (MANET) is an important

field where many of the users are using mobile devices for last few years where

ad-hoc routing in networks is one of the prominent issues. A malicious node can

drop the routing information, data packets intentionally and disturb the

process of the routing protocol. To solve this problem, we proposed a novel

approach for effective key management, and prevention of malicious nodes.

Security to the routing protocol is incorporated using traditional SHA

algorithm along with symmetric and asymmetric key encryption methods. The

performance of the proposed algorithms is analyzed with different algorithms

and results are shown improvement in terms of the time taken to transfer the

data, communication overheads and battery consumption.

1. INTRODUCTION

Now-a-days the

mobile devices are used more frequently as every person owns at least a mobile

device. We use these devices for almost everything like to share data, post an

update, and share the information. In such cases these devices must be secured.

Cryptography will be playing a major role in hiding the data or information.

These cryptography algorithms are divided into two types, symmetric key

cryptography algorithms and asymmetric key cryptography algorithms. The

symmetric algorithms will use same key for encryption and decryptions of the information.

These are again divided into Block ciphers and stream ciphers. Block ciphers

will use block of data for the encryption and decryption like AES, DES and

Blowfish. Stream ciphers use single bit at a time like in RC4. In asymmetric

key algorithms, there will be two different keys used for the encryption and

decryption, one is public key and another is private key. We can use one key

for encryption and other for decryption like RSA algorithm. Public key is

public to all but private key is recognized for the user only. Due to large

processing of the keys the asymmetric algorithms are much slower than the

symmetric key algorithms.

1.1 Goals of Cryptography

1.1.1 Confidentiality: Confidentiality is basically used to

ensure that the data is safe and private this is obtained using encryption.

1.1.2 Data Integrity: This is to ensure that the data is not

changed intentionally or accidentally.

1.1.3 Authentication: Authentication is to ensure that the

originator is original and is known to receiver.

1.1.4 Non-Repudiation: Non-Repudiation is to assure that the

sender cannot refuse the fact that he send the message or vice versa.

1.2 Asymmetric Key Algorithm

In asymmetric key algorithm two different keys are used, one

public key and another private key. Generally, the public key is used for the

encryption process and the private key is used for the decryption process

because this will make only the receiver to decrypt the message. So, the sender

encrypts the message with the help of the public key of the receiver and sends

the message, now the receiver will be able to decrypt the message using his own

private key.

1.3 Symmetric key Algorithm

In symmetric key algorithm, we will use only one single key

for both encryption and decryption. The sender will encrypt the message with a

secret key that is shared between the sender and the receiver privately. This

key will be used by the receiver to decrypt the cipher text from the sender.

Thus in this algorithms one secret key is used.

1.4 Cryptographic hash functions

The cryptographic hash functions are the functions that take

an input and return a fixed-size alphanumeric string. The string is called the

hash value or message digest or digital fingerprint or digest or checksum.

The ideal hash function has three main properties: (a) It is

extremely easy to calculate a hash for any given data. (b) It is extremely

computationally difficult to calculate an alphanumeric text that has a given

hash. (c)It is extremely unlikely that two slightly different messages will

have the same hash.

A cryptographic hash function should behave as much as

possible like a random function while still being efficiently computable. A

cryptographic hash function is considered “insecure” from a

cryptographic point of view, if either of the following is computationally

feasible, finding a (previously unseen) message that matches a given hash

values and finding “collisions”, in which two different messages have

the same hash value.

2. LITERATURE SURVEY

In it is concluded that AES is faster and more efficient

than other encryption algorithms. When the broadcast of data is considered

there is insignificant difference in performance of different symmetric key

schemes. Under the scenario of data transfer it would be better to use AES

scheme in case the encrypted data is stored at the other end and decrypted

multiple times.

In 2016, Madumita

Panda has done performance analysis of encryption algorithms for security. In

this paper, the professor compared different algorithms in terms of CPU time,

memory, the algorithms include symmetric as well as asymmetric algorithms.

In 2014, Suni kumar Sahu, Ajay kushwaha have done analysis

of symmetric encryption algorithms for mobile ad hoc network. In this paper, he

compared only symmetric key algorithms in the MANETS and displayed the results

in terms of battery usage, end to end delay, processing time etc. The author

used ns2 simulator to compare the performance of the algorithms.

In 2016, M V Narayana, Dr G Narsimha, Dr SSVN Sarma proposed

security enhancement in MANETS using SHA Algorithm 6. In this paper, the

authors proposed a method to improve the security in the mobile ad hoc networks

using the Secure Hashing Algorithm.

In 2 it states that AES is faster and more proficient than

other encryption algorithms. Increasing the key size by 64 bits of AES leads to

increase in energy consumption about8%without any data transfer. The difference

is not obvious. Reducing the number of rounds leads to power savings but it

makes the protocol insecure for AES and should be avoided.

3. PROPOSED SYSTEM

The proposed

system involves a multi-level security in MANETS where the data is will undergo

the cryptographic hash function and an encryption algorithm and is sent to the

destination where the data is decrypted and the data is checked for its

integrity using the SHA algorithm.

At the sender the message digest of the data that has to be

sent is obtained using the SHA-256 algorithm, then the data along with the

message digest is encrypted and will be transmitted to the destination. When

the message is received at the destination it will be decrypted and the hash

code value of the incoming message is compared to the value that is

concatenated to the input string. This way the integrity of the message is

verified.

Now AES algorithm and RSA algorithms are used in the place

of the encryption algorithms and their performance is compared.

3.1 SHA-256:

SHA-256 belongs to the SHA-2 family of hash functions; the

family consists of SHA-256 and SHA-512 that are differentiated by the word

block sizes. The FIPS PUB 180-2 standard is followed by the SHA-256. This is

developed by the National Institutes of Standards and Technology (NIST) and

other government and private parties.

A hash function is a mathematical function that converts the

input valued into another compressed value of fixed length. The input to the

hash function is of arbitrary length but output is of fixed length.

SHA-256 operates in the manner of MD4, MD5 and SHA-1. The

message is first padded with its length in such a way that the result is a

multiple of 512 bit long word then it is parsed into 512-bit message blocks M1,

M2 … Mn. Now the blocks are processed one at a time beginning from the initial

buffer H (0), sequentially calculate

H(i) = H(i-1) + CMi

*( H(i-1) )

Where C is the SHA-256 compression function and + means word-wise

mode 232 addition. H(n) is the hash or message digest of the message

3.2 RSA Algorithm

RSA is the acronym derived for Ron Rivest, Adi Shamir and

Leonard Adleman, who first described it in 1978. This algorithm is used to

encrypt and decrypt the messages. It is an asymmetric cryptographic algorithm

means it uses two different keys for encryption and decryption.

The main steps in the RSA algorithm are (a) Key Generation

(b) Encryption (c) Decryption. The key generation can be done as follows: Generate

two large prime numbers p and q of approximately equal size. Find the product

of the two numbers let it be ‘n’.

n = p*q

Calculate ? such that ? = (p-1)*(q-1). Next choose ‘e’ such

that gcd(e, ? ) = 1 , 1 < e < ?
Compute the value d such that ed = 1 mod ?
Now the Message is encrypted like
Cipher = (Message e)
mod n
The cipher message is then decrypted like
Message = (Cipher d)
mod n
3.3 AES Algorithm
The Advanced encryption standard is symmetric key
cryptographic algorithm which is also known as Rijndael. This is a block cipher
algorithm used as an encryption standard by the U.S. government. This is the
enhancement of the DES algorithm; AES is found at least six times faster than
the DES algorithm. AES algorithm uses 10 rounds for 128-bit keys, 12 rounds for
192-bit key and 14 rounds for the 256-bit keys where each of these rounds uses
a different 128-bit round key which is calculated from the original AES key.
The encryption in AES is done as follows: (a) Byte Substitution (b) Shift rows
(c) Mix columns (d) Add round Key. Now the initial message is converted into a
nonreadable format (cipher). The decryption
process is similar to the encryption process but the order of the operations is
reverse i.e. (a) Add round key (b) Mix columns (c) Shift rows (d) Byte
substitution. The encryption and the
decryption process needs to be separately implemented although they are very
similar to each other.
4. RESULTS
The home page of the
project is the following which allows you to choose the number of nodes to be
created in the MANET
The data is then transferred from the source to destination
with the SHA algorithm and AES algorithm.
Now the data is transferred using the RSA algorithm and SHA
algorithm
Finally the time and the battery consumptions of both the
techniques are compared and the results are shown below:
5. CONCLUSIONS AND FUTURE WORK
The RSA algorithm will consume more time because of the
large processing of the information. This makes the AES algorithm faster that
the RSA algorithm. The battery consumption factor is also high for the RSA
algorithm because of the calculation of the large primes and operations on
them. This leaves that the AES along with the SHA shows better results than the
RSA along with the SHA. In future
these algorithms will become obsolete as the advancement of the mobile
processing technology and the introduction of highly advanced processing
machines like super computers and quantum computers. So the security in these
MANETS are to be provided by the future proof algorithms rather than algorithms
that are vulnerable to brute force attacks in the future.